Oxidation is Key for Black Carbon Surface Functionality and Nutrient Retention in Amazon Anthrosols

نویسندگان

  • Biqing Liang
  • Chung-Ho Wang
  • Dawit Solomon
  • James Kinyangi
  • Flavio J. Luizăo
  • Sue Wirick
  • Jan O. Skjemstad
  • Johannes Lehmann
چکیده

Aims: Soil black carbon (BC) has been shown to possess large amounts of cation exchange sites and surface charge, and is viewed as a potential soil amendment to improve nutrient retention and for pollutant remediation. This study investigated the nanoscale distribution of reactive functional groups and the binding of cations on the surface of micron-size BC particles, identified the key processes, and explored the sources of surface functionality and their relative contribution to cation exchange capacity (CEC). Materials and Methods: Elemental microprobe and synchrotron-based Scanning Transmission X-ray Spectromicroscopy (STXM) coupled with Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy were used for nano-scale mapping of Research Article British Journal of Environment & Climate Change, 3(1): 9-23, 2013 10 cations and reactive functional groups, and further distinction of the sources of reactive functional groups generated either by oxidation of BC surfaces or by adsorption of nonBC organic matter onto the BC surfaces. Their respective contribution to cation adsorption was obtained using a depth profile of a BC-rich Anthrosol from the central Amazon, Brazil. Results and Discussion: Adsorption of Non-BC organic matter is more dominant on the surface of BC particle in topsoil as evidenced by a stronger signal of microbial biomass and humic substances extracts. In comparison, a greater level of oxidation was found on the outerlayer of BC particles in subsoil horizons. Organic C in subsoils was found to generate 23-42% more CEC per unit C than topsoil. Based on CEC per unit C, the capacity of BC in creating CEC was 6-7 times higher than Non-BC, and the BC in deeper horizons had up to 20% higher CEC than the topsoil horizon. Near BC surfaces, higher ratios of Ca/C and K/C in subsoil than topsoil horizons reinforce the observation that BC in subsoil horizons had a higher capacity in binding cations and creating CEC than in the topsoil horizon. Conclusions: Oxidation of BC is suggested to be more efficient and important for creating CEC than the adsorption of non-BC onto BC surfaces, thus identified as being key for BC surface functionality and nutrient retention in Amazon Anthrosols.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Black Carbon Increases Cation Exchange Capacity in Soils

Black Carbon (BC) may significantly affect nutrient retention and play a key role in a wide range of biogeochemical processes in soils, especially for nutrient cycling. Anthrosols from the Brazilian Amazon (ages between 600 and 8700 yr BP) with high contents of biomassderived BC had greater potential cation exchange capacity (CECmeasured at pH 7) per unit organic C than adjacent soils with low ...

متن کامل

Stability of biomass-derived black carbon in soils

Black carbon (BC) may play an important role in the global C budget, due to its potential to act as a significant sink of atmospheric CO2. In order to fully evaluate the influence of BC on the global C cycle, an understanding of the stability of BC is required. The biochemical stability of BC was assessed in a chronosequence of high-BC-containing Anthrosols from the central Amazon, Brazil, usin...

متن کامل

Palladium nanoparticles supported on carbon black powder as an effective anodic catalyst for application in a direct glucose alkaline fuel cell

Palladium nanoparticles supported on carbon black powder (Vulcan XC-72) nanocomposite (Pd/C) are synthesized as the catalyst for the anodic oxidation of glucose for use in a direct glucose alkaline fuel cell (DGAFC). Characterization of the catalyst is carried out using physical and electrochemical methods. It is observed that Palladium nanoparticles are uniformly dispersed onto the carbon blac...

متن کامل

Photo catalytic removal of Toluene vapor from air in the Adsorption-Photo catalytic bed

Background and aims: Clean air is one of the most important components of health and sustainable development. Every person breathes about 10 kg of air per day and if it contains pollutants, it will have a serious impact on their health. Indoor air quality (IAQ) is one of the major health issues that have been addressed in recent years with changes in lifestyle patterns. Usually, due to the incr...

متن کامل

Surface Modification of Glassy Carbon Electrode by Ni-Cu Nanoparticles as a Competitive Electrode for Ethanol Electro-Oxidation

In the present study, Nickel-Copper nanoparticles were electrodeposited on glassy carbon electrode (GCE) by using electroplating deposition method. The prepared electrode was characterized by scanning electron microscopy (SEM) and elemental mapping analysis. Results showed that Ni-Cu nanoparticles with a high density are distributed at the surface of the glassy carbon electrode. Subsequentl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013